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1. INTRODUCTION

Let X be a normed linear space and M n a finite dimensional subspace of
X. For x E X denote

i.e., p(x, M n ) is the distance from x to Mn- Denote P to be the possibly set­
valued best approximation operator from X to M n , namely,

for each x E X. Define the local modulus of continuity of P at x E X by

(For a detailed discussion of this modulus, see [7].)

* This paper was written during this author's visit at Central Michigan University.
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Furthermore, assume that for a given x E X, we have a sequence
{qk}cMn such that Ilx-qkll~p(x,Mn) as k~oo. Then evidently
P(qb P(x)) ~ 0 as k ~ CIJ. This raises the natural question of how one
estimates p(q, P(x)) when Ilx-qll-p(x, M n) is known. We are therefore
led to the definition of the local modulus of strong unicity of P at x E X:

Since M n is finite dimensional, we have that Q(Mn, x, 6) and Q*(Mn, x, 6)
tend to zero as 6~ O.

The study of these moduli was inspired by the pioneering works of Freud
[6J, Newman and Shapiro [10J, Holmes and Kripke [8J, and Bjor­
nestal [4].

It can be easily seen that for any M n c X and x E X

Q(Mn, x, 6) ~ Q*(Mn, x, 26).

This follows from the inequality

Ijx - qjj- p(x, M n ) ~ 26,

which holds for any qEP(xd and Xl EX such that Ilx-xlll ~6. Thus the
modulus of continuity of P is at least of the same order as the modulus of
strong unicity. In fact, it is known that in most spaces Q(Mn , x, 6) tends to
zero faster than Q*(Mn, x, 6) as 6~ O. This raises the question of whether
these moduli can be of the same order for any M n c X and x E X. This
motivates the following.

DEFINITION. We say that X satisfies the E-property if for any Mn c X
and x E X there exists a constant y > 0 depending only on x and M" such
that

(1.1 )

It is known that if X = LP, then for any M nc LP and f E LP,
Q(Mnj,6)~const'6 if 2~p<00 [8J and Q(M",j,o~const.·6P/2,

0<6~1, if 1<p<2 [4]. On the other hand, Q*(M",j,6) cannot, in
general, be of better order than 61

/
2

, 1 < p < 00 [1]. Thus we can conclude
that LP, 1 < p < 00, does not satisfy the E-property.

In the present paper we shall prove tha L l satisfies the E-property. We
remark here that in [9J it was shown that if X = L 1 [a, b J with Lebesque
measure and M" is a Haar subspace of C[a, bJ, then (1.1) holds.
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Let (T, E, fl) be a complete, IT-finite, positive measure space. Consider
X =L 1 =L] (T, E, fl) be the Banach space of all equivalence classes of real­
valued, fl-integrable functions normed in the usual way.

THEOREM 1. L 1 satisfies the E-property.

Proof Let MncL] andfEL 1\Mn be arbitrary. (The case wherefEMn
is trivial.) Without loss of generality, we may assume that 0 E P(f), By a
characterization theorem proved in [13], 0 E P(f) if and only if there exists
a function ¢J E L oc, I¢[ ~ 1, such that

f .p sign(f) dfl +f p¢dfl = 0
supp(f) ZU)

(2.1 )

where Z(f) = {t E T: j( t) = O} and supp(f) = T\Z(f). Here we have used
the assumption that (T, E, fl) is a-finite. However, no generality is lost
since T can be replaced with the cumulative support ofjand M n •

Consider a q E M n such that

Ilf - qll- p(l, M n ) ~ b.

Let ZI(f) = {tEZ(f): 1¢(t)1 = 1}, Z2(f)=Z(f)\ZI(f), and set

A (q) = {t E T: 0 < f( t) ~ q( t) or q( t) ~ f( t) < 0 }

and

B(q) = T\(A(q) u Z(f)).

Consider now the function fl ELI defined by

(2.2)

fl (t) = q(t),

= /q(t)I¢(t) + q(t),

=f(t),

t E A(q) u Z2(f),

tEZI(f),

t E B(q).

(2.3 )

Then Z(fj-q)=A(q)uZ2(f)u(Z](f)nZ(q)) and since sign(f)=
sign(f -q) on B(q), we have

sign(f] - q)(t) = 0,

=¢(t),

= sign(f(t)),

tEZ(f1 -q),

t E ZI(f)\Z(q),

t E B(q). (2,4 )
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<PI(t) = sign(f(t)),

= <p(t),

= 1,

tE A(q),

tE Z2(f) u (ZI(f)n Z(q)),

tE 1\Z(f1 -q).

Then <PI E L 00, 1<pI! ~ 1, and by (2.1) and (2.4), we have for any p E M n ,

= f prj) dll +f p sign(f) dll
ZICf)\Z(q) Seq)

+ f p sign(f) dll +f P<P dll
A(q) Z2(f) u (ZI(f) " Z(q»

= f p sign(f) dll +f pr/J dll = O.
supp(f) Z(f)

Therefore 0 E P(fl - q), i.e., q E P(fl ).
We now give an estimate for Ilf - filii. By (2.1) and (2.2)

l5 ~ Ilf - qlll - p(f, M n ) = IIf -qlll -llflll

= f If -ql dll- f IfI dll
T supp(f)

= f If - ql dll- f (f-q) sign(f) dll +f {Iq/ + q<p} dll
supp(f) supp(f), Z(f)

=2 f If-ql dll+ f {!ql +qr/J} dll·
A(q) Z(f)

On the other hand, by the construction of fl> we have

Ilf - filii = LIf - fll dll

= f If-ql dll+ f Iql dll+ f Ilqlr/J+ql df.l
A(q) Z2(f) ZJ(f)

(2.5)

= J If -qj df.l+ J {jq! +rj)q} df.l+ J Iql df.l. (2.6)
A(q) z,(f) Z2(f)
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Set M k = {p E M n : P =0 /l-a.e. on Z2(f)}. Now M k is a subspace of M n of
some dimension k, O~k~n. Then Mn=span{p" ..., Pk' Pk+j,·.., Pn},
where {PI"'" pd is a basis for M k. Set Mn_k=span{Pk+!>···, Pn}. Evi­
dently,

are two different norms on M n - k • Thus, by the equivalence of norms on
finite dimensional spaces, there exists a l' ~ 1 depending only on f and M n

such that for any pEMn _ k

(2.7)

Then relation (2.7) also holds for each pEMw This, (2.6), and (2.5) imply
that

IIf - filii ~ f if - ql d/l +f {Iq[ + qJq} dtl + l' r (l-lqJ[ )Iql dtl
A(q) Z,(f) ,)Z2(/)

~f If-qld/l+f {/q/+q>q}d/l+yf {Iql+q>q}d/l
A(q) Z,(f) Z2(f)

~ Y {2 f If - ql dtl +f {Iq[ + qJq} dtl }
A(q) Z(f)

~1'b.

Finally, since q E P(fi) it follows that

p(q, P(f)) ~ Q(Mn , j, 1'b),

I.e.,

(2.8)

and the theorem is proved. I

Remark 1. The proof of the above theorem provides an explicit form of
the constant y in (2.8). Let M n cL\fEL1\Mn and choosepEP(f) and
any qJ E L co such that (2.2) holds for qJ, f - P, and any q E Mn • Then

(i) if tl(Z2(f - p))>O, then

y = sup J '
qEMn_k\{O) Z2U-p) (l-Iq>l)lql djJ.
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where M n_ k is a subspace complement to M k = {q E M n: q = 0 jl-a.e. on
Z2(f - p)}; or

(ii) if jl(Z2(f - p» = 0, then y = 1.

We now show that in the event (T, I:, jl) is nonatomic the constant y can
always be taken to be one. In order to prove this, we will require the
following lemma which can be found in [12].

LEMMA. Suppose that the measure space (T, I:, jl) is nonatomic, that ifJ is
a measurable function on T with lifJl ~ 1 jl-a.e., and that ql' q2,'''' qn are in
L I . Then there exists a measurable function t/J on T with It/JI = 1 jl-a.e., such
that

We then have the following:

THEOREM 2. Suppose that the measure space (T, I:, jl) is nonatomic.
Then L I satisfies the E-property with y = 1.

Proof We need only note that for f E L \Mnand p E P(f), the above
lemma implies we can choose a ifJ E L 00 with l¢il = 1 such that (2.2) holds
for ifJ,f-p, and all qEMw This implies that jl(Z2(f-P)) =0 and so we
can take y = 1 in (2.8). I

We now give some additional definitions. We say that the best
approximation operator P satisfies a Lipschitz condition at f ELI if f has a
unique best approximation p*(f) E M n and there exists a constant A> 0
depending only on f and M n such that for every fl ELI,

(2.9)

Furthermore, we say that p*(f) is a strongly unique best approximation if
for some y > 0 depending only on f and M n and any q E M n'

Ilq - p*(f)111 ~ y{ Ilf - qlll -Ilf - p*(f)III}' (2.10)

Evidently (see [5, p. 82], e.g.), the strong unicity property implies the
Lipschitz property. It is known [11] that p*(f) is the strongly unique best
approximation to f EL I if and only if

if q sign(f - p*(f» djl! < f Iql df.l.
supp(f - p*(f)l Z(f - p*(f)l

for each q E M w
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By the results proved in [1,4, and 8J, the Lipschitz property and strong
unicity are in general not equivalent in LP, 1 < P< 00. Namely, the class of
functions which have P satisfying the Lipschitz property may be, in these
spaces, a much wider class than that which have strongly unique best
approximations.

However, in view of the above theorems, we obtain that strong unicity
and the Lipschitz property are equivalent in L 1.

COROLLARY 1. For any M neLl and fELl, the following are equivalent:

(i) f has a strongly unique best approximation from M n;

(1i) the best approximation operator satisfies the Lipschitz property
atf;

(iii) if p*(f) is the best approximation of1, then for any qEMn

if q sign(f - p*(f» dill < J Iql dJi.
supp(f - p*(f) Z(f - p'(f»)

Remark 2. Corollary 1, under the assumption that (T, J:, J1) be non­
atomic, coupled with a result in [2 J, implies that the set of functions where
P satisfies the Lipschitz property is dense.

Remark 3. In the space C, the continuous real-valued functions on a
compact metric space, Bartelt and Schmidt [3J proved that the Lipschitz
property and strong unicity are equivalent. However, it is not known
whether C satisfies the E-property.

Finally, we make note of the following. If P satisfies the Lipschitz
property at f E L \ then we define the Lipschitz constant, }'n(f), to be the
largest constant such that (2.9) holds for allfl ELI. UfEL l has a strongly
unique best approximation from M n , then we define the strong unicity con­
stant, Yn(f), to be the largest constant such that (2.10) holds for all q E Mn"
Evidently, since Q(Mn, 1, <5) ~ Q*(Mn> 1, 215), we have )'n(f) ~ 2Yn(f), but
in light of Theorem 2, we have the following corollary.

COROLLARY 2. Suppose that the measure space (T, 2:, J1) is nonatomic.
Let M neLl and f ELI \Mn. Iff has a strongly unique best approximation
from M n, then

(2.11 )

Remark 4. In the space C, it is known that (2.11) cannot in general
hold since Yn(f) can tend to infinity faster than )",n(f)·
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3. CONCLUSIONS

In the present paper, we have shown that the modulus of continuity of P
and the modulus of strong unicity are of the same order for every finite­
dimensional subspace of L 1

• This result was then used to show that the
Lipschitz property of P is equivalent to strong unicity in L 1. This, with the
results in [3] for C, show that these two spaces are very special from the
point of view of approximation theory. A question comes to mind as to
whether there are other spaces where the Lipschitz property of P and
strong unicity are equivalent for every finite dimensional subspace.
Furthermore, do such spaces necessarily have to be nonstrictly convex?

The authors wish to acknowledge Professor Darrell Schmidt for his
many helpful suggestions during the preparation of this paper.
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